Generating CSV/TXT Data:
import pandas as pd
from upstox_api.api import*
from datetime import datetime
api_key=open('api_key.txt','r').read()
access_token=open('access_token.txt','r').read().strip()
u=Upstox(api_key,access_token)
master_contract=u.get_master_contract('nse_eq')
master_contract=pd.DataFrame(master_contract)
exchange='nse_eq'
tradingsymbol='reliance'
from_date='01/09/2018'
now=datetime.now()
to_date=datetime.strftime(now,'%d/%m/%Y')
data=u.get_ohlc(u.get_instrument_by_symbol(exchange,tradingsymbol),OHLCInterval.Minute_1,
datetime.strptime('%s'%(from_date),'%d/%m/%Y').date(),datetime.strptime('%s'%(to_date),'%d/%m/%Y').date())
data=pd.DataFrame(data)
data['timestamp']=pd.to_datetime(data['timestamp'],unit='ms')
data['timestamp']=data['timestamp'].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata')
data.set_index('timestamp',inplace=True)
data.to_csv('RELIANCE_'+str(datetime.now().strftime('%Y_%m_%d')),date_format='%Y-%m-%d %H:%M:%S')
print(data)
For backtesting use Backtrader just pip install backtrader in cmd then go for the code:
import backtrader as bt
import backtrader.feeds as btfeeds
import os
import datetime
class TestStrategy(bt.Strategy):
def log(self, txt, dt=None):
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
self.dataclose = self.datas[0].close
self.order = None
self.buyprice = None
self.buycomm = None
bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
if order.status in [order.Completed]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else:
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
self.log('Close, %.2f' % self.dataclose[0])
if self.order:
return
if not self.position:
if self.dataclose[0] - self.dataclose[-1] > 3:
self.log('BUY CREATE, %.2f' % self.dataclose[0])
self.order = self.buy()
else:
if self.dataclose[0] - self.dataclose[-1] < -3:
self.log('SELL CREATE, %.2f' % self.dataclose[0])
self.order = self.sell()
if __name__ == '__main__':
cerebro = bt.Cerebro()
cerebro.addstrategy(TestStrategy)
datapath = os.path.abspath(os.getcwd() + '/RELIANCE_' + str(datetime.datetime.now().strftime("%Y_%m_%d")))
# Create a Data Feed
data = btfeeds.GenericCSVData(
dataname=datapath,
fromdate=datetime.datetime(2018,9,1),
dtformat=('%Y-%m-%d %H:%M:%S'),
timestamp=0,
high=3,
low=4,
open=5,
close=1,
volume=6,
timeframe= bt.TimeFrame.Minutes,
compression= 1
)
cerebro.adddata(data)
cerebro.broker.setcash(1000.0)
cerebro.addsizer(bt.sizers.FixedSize, stake=0.05)
cerebro.broker.setcommission(commission=0.01)
print('Starting Balance: %.2f' % cerebro.broker.getvalue())
cerebro.run()
print('Final Balance: %.2f' % cerebro.broker.getvalue())
cerebro.plot()